xhydro.extreme_value_analysis package¶
Extreme value analysis analysis module.
- xhydro.extreme_value_analysis.fit(ds: Dataset, locationcov: list[str] | None = None, scalecov: list[str] | None = None, shapecov: list[str] | None = None, variables: list[str] | None = None, dist: str | rv_continuous = 'genextreme', method: str = 'ML', dim: str = 'time', confidence_level: float = 0.95, niter: int = 5000, warmup: int = 2000) Dataset [source]¶
Fit an array to a univariate distribution along a given dimension.
Parameters¶
- dsxr.DataSet
Xarray Dataset containing the data to be fitted.
- locationcovlist[str]
List of names of the covariates for the location parameter.
- scalecovlist[str]
List of names of the covariates for the scale parameter.
- shapecovlist[str]
List of names of the covariates for the shape parameter.
- variableslist[str]
List of variables to be fitted.
- diststr or rv_continuous distribution object
Name of the univariate distribution or the distribution object itself. Supported distributions are genextreme, gumbel_r, genpareto.
- method{« ML », « PWM », « BAYES}
Fitting method, either maximum likelihood (ML), probability weighted moments (PWM) or bayesian (BAYES).
- dimstr
Specifies the dimension along which the fit will be performed (default: « time »).
- confidence_levelfloat
The confidence level for the confidence interval of each parameter.
- niterint
The number of iterations of the bayesian inference algorithm for parameter estimation (default: 5000).
- warmupint
The number of warmup iterations of the bayesian inference algorithm for parameter estimation (default: 2000).
Returns¶
- xr.Dataset
Dataset of fitted distribution parameters and confidence interval values.
Notes¶
Coordinates for which all values are NaNs will be dropped before fitting the distribution. If the array still contains NaNs or has less valid values than the number of parameters for that distribution, the distribution parameters will be returned as NaNs.
- xhydro.extreme_value_analysis.return_level(ds: Dataset, locationcov: list[str] | None = None, scalecov: list[str] | None = None, shapecov: list[str] | None = None, variables: list[str] | None = None, dist: str | rv_continuous = 'genextreme', method: str = 'ML', dim: str = 'time', confidence_level: float = 0.95, return_period: float = 100, niter: int = 5000, warmup: int = 2000, threshold_pareto: float | None = None, nobs_pareto: int | None = None, nobsperblock_pareto: int | None = None) Dataset [source]¶
Compute the return level associated with a return period based on a given distribution.
Parameters¶
- dsxr.DataSet
Xarray Dataset containing the data for return level calculations.
- locationcovlist[str]
List of names of the covariates for the location parameter.
- scalecovlist[str]
List of names of the covariates for the scale parameter.
- shapecovlist[str]
List of names of the covariates for the shape parameter.
- variableslist[str]
List of variables to be fitted.
- diststr or rv_continuous distribution object
Name of the univariate distribution or the distribution object itself. Supported distributions are genextreme, gumbel_r, genpareto.
- method{« ML », « PWM », « BAYES}
Fitting method, either maximum likelihood (ML), probability weighted moments (PWM) or bayesian (BAYES).
- dimstr
Specifies the dimension along which the fit will be performed (default: « time »).
- confidence_levelfloat
The confidence level for the confidence interval of each parameter.
- return_periodfloat
Return period used to compute the return level.
- niterint
The number of iterations of the bayesian inference algorithm for parameter estimation (default: 5000).
- warmupint
The number of warmup iterations of the bayesian inference algorithm for parameter estimation (default: 2000).
- threshold_paretofloat
The value above which the Pareto distribution is applied.
- nobs_paretoint
The total number of observations used when applying the Pareto distribution.
- nobsperblock_paretoint
The number of observations per block when applying the Pareto distribution.
Returns¶
- xr.Dataset
Dataset of with the return level and the confidence interval values.
Notes¶
Coordinates for which all values are NaNs will be dropped before fitting the distribution. If the array still contains NaNs or has less valid values than the number of parameters for that distribution, the distribution parameters will be returned as NaNs.
Subpackages¶
Submodules¶
xhydro.extreme_value_analysis.julia_import module¶
Load and install Julia dependencies into python environment.
xhydro.extreme_value_analysis.parameterestimation module¶
Parameter estimation functions for the extreme value analysis module.
- xhydro.extreme_value_analysis.parameterestimation.fit(ds: Dataset, locationcov: list[str] | None = None, scalecov: list[str] | None = None, shapecov: list[str] | None = None, variables: list[str] | None = None, dist: str | rv_continuous = 'genextreme', method: str = 'ML', dim: str = 'time', confidence_level: float = 0.95, niter: int = 5000, warmup: int = 2000) Dataset [source]¶
Fit an array to a univariate distribution along a given dimension.
Parameters¶
- dsxr.DataSet
Xarray Dataset containing the data to be fitted.
- locationcovlist[str]
List of names of the covariates for the location parameter.
- scalecovlist[str]
List of names of the covariates for the scale parameter.
- shapecovlist[str]
List of names of the covariates for the shape parameter.
- variableslist[str]
List of variables to be fitted.
- diststr or rv_continuous distribution object
Name of the univariate distribution or the distribution object itself. Supported distributions are genextreme, gumbel_r, genpareto.
- method{« ML », « PWM », « BAYES}
Fitting method, either maximum likelihood (ML), probability weighted moments (PWM) or bayesian (BAYES).
- dimstr
Specifies the dimension along which the fit will be performed (default: « time »).
- confidence_levelfloat
The confidence level for the confidence interval of each parameter.
- niterint
The number of iterations of the bayesian inference algorithm for parameter estimation (default: 5000).
- warmupint
The number of warmup iterations of the bayesian inference algorithm for parameter estimation (default: 2000).
Returns¶
- xr.Dataset
Dataset of fitted distribution parameters and confidence interval values.
Notes¶
Coordinates for which all values are NaNs will be dropped before fitting the distribution. If the array still contains NaNs or has less valid values than the number of parameters for that distribution, the distribution parameters will be returned as NaNs.
- xhydro.extreme_value_analysis.parameterestimation.return_level(ds: Dataset, locationcov: list[str] | None = None, scalecov: list[str] | None = None, shapecov: list[str] | None = None, variables: list[str] | None = None, dist: str | rv_continuous = 'genextreme', method: str = 'ML', dim: str = 'time', confidence_level: float = 0.95, return_period: float = 100, niter: int = 5000, warmup: int = 2000, threshold_pareto: float | None = None, nobs_pareto: int | None = None, nobsperblock_pareto: int | None = None) Dataset [source]¶
Compute the return level associated with a return period based on a given distribution.
Parameters¶
- dsxr.DataSet
Xarray Dataset containing the data for return level calculations.
- locationcovlist[str]
List of names of the covariates for the location parameter.
- scalecovlist[str]
List of names of the covariates for the scale parameter.
- shapecovlist[str]
List of names of the covariates for the shape parameter.
- variableslist[str]
List of variables to be fitted.
- diststr or rv_continuous distribution object
Name of the univariate distribution or the distribution object itself. Supported distributions are genextreme, gumbel_r, genpareto.
- method{« ML », « PWM », « BAYES}
Fitting method, either maximum likelihood (ML), probability weighted moments (PWM) or bayesian (BAYES).
- dimstr
Specifies the dimension along which the fit will be performed (default: « time »).
- confidence_levelfloat
The confidence level for the confidence interval of each parameter.
- return_periodfloat
Return period used to compute the return level.
- niterint
The number of iterations of the bayesian inference algorithm for parameter estimation (default: 5000).
- warmupint
The number of warmup iterations of the bayesian inference algorithm for parameter estimation (default: 2000).
- threshold_paretofloat
The value above which the Pareto distribution is applied.
- nobs_paretoint
The total number of observations used when applying the Pareto distribution.
- nobsperblock_paretoint
The number of observations per block when applying the Pareto distribution.
Returns¶
- xr.Dataset
Dataset of with the return level and the confidence interval values.
Notes¶
Coordinates for which all values are NaNs will be dropped before fitting the distribution. If the array still contains NaNs or has less valid values than the number of parameters for that distribution, the distribution parameters will be returned as NaNs.